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Abstract—The intramolecular addition of the free radical derived from the alkyl bromide 13 provides an expeditious and
stereoselective approach to the azabicyclic core 14, which is applicable to the biologically important polyguanidinium alkaloids
batzelladine A (1) and D (2). © 2001 Published by Elsevier Science Ltd.

The batzelladines are a growing family of novel and
highly complex polyguanidinium alkaloids that were
isolated from the Caribbean sponge Batzella sp. by
Patil and Faulkner.1,2 Batzelladine A (1, Fig. 1) is
particularly pertinent because it competitively inhibits
the binding of the HIV envelope protein gp-120 to the
human CD4 receptor with micromolar affinity. Since
acquired immunodeficiency syndrome (AIDS) is associ-
ated with the progressive decline in the number of
CD4+ cells, which in turn leads to the failure of the
immune system and ultimately death through suscepti-
bility to infection, this relationship is clearly important
and mechanistically intriguing. Hence, the therapeutic
significance of the batzelladines coupled with their
unique and complex skeletal composition has stimu-
lated significant synthetic attention.3–5 The stereochemi-
cal revision of batzelladine A and D by Snider and

co-workers to an anti-relationship of the angular
hydrogens flanking the pyrrolidine nitrogen, allowed
Overman and co-workers to accomplish the first asym-
metric total synthesis of batzelladine D.6,7

We have recently demonstrated that oxauracil and
oxathymine provide excellent free radical acceptors for
a variety of radical cyclization reactions.8 This type of
approach, with 5-(hydroxymethyl)uracil, was expected
to provide a diastereoselective route to an intermediate,
which would be applicable to the guanidinium core of
batzelladine A and D. Furthermore, this strategy would
circumvent the problem associated with controlling the
C-5 carboxylate stereochemistry (thymine numbering).
Herein, we now describe an adaptation to our previous
studies, which provides both an expeditious and
diastereoselective route to the azabicyclic core of these
important natural products.

Scheme 1 summarizes the synthetic routes utilized for
the preparation of the prerequisite alkyl bromides 6a/c
and acyl selenides 6b/d for our initial study. Treatment
of the secondary alcohol 4 with 3-N-benzoyl protected
uracil and thymine 3a/b under Mitsunobu conditions
furnished 5a and 5b in 81% and 72% yield, respec-
tively.9,10 The alkyl halides 6a/c were then prepared via
the acid-catalyzed hydrolysis of the tert-butyl-
dimethylsilyl group 5a/b, and treatment of the resulting
primary alcohol with N-bromosuccinimide and
triphenylphosphine.11 The acyl radical cyclization reac-
tions were examined for comparative purposes, in
which additional functionality was expected to be use-
ful for analog studies. Oxidation of the primary tert-
butyldimethylsilyl ethers 5a/b with Jones reagent

Figure 1.
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Scheme 1.

furnished the corresponding carboxylic acids, which
were converted using the Crich protocol to the acyl
selenides 6b/d in good yield.12,13

Table 1 summarizes the results for the alkyl and acyl
radical cyclization reactions. Treatment of 6a/b with
tris(trimethylsilyl)silane and triethylborane, in the pres-
ence of air, furnished the corresponding azacycles 7a/b
with �19:1 diastereoselectivity (entries 1–2).15,16 The
origin of the trans-diastereoselectivity was attributed to
non-bonding interactions between the C-2 carbonyl of
uracil and the incipient �-amino stereogenic center.8,17

The synthesis of the batzelladines using this strategy
requires the introduction of an additional stereogenic
center at C-5.

We envisioned that thymine would serve as a useful
model to examine the stereoselectivity of a radical

reduction at C-5. Treatment of 6c/d under analogous
reaction conditions furnished the azabicycles 7c/d with
�19:1 diastereoselectivity at C-5/6 (entries 3–4). The
origin of diastereocontrol at C-5 is presumably a conse-
quence of the conformational bias of the azabicyclic
core derived after the cyclization, which results in
reduction from the more accessible convex face of the
molecule, as illustrated in Fig. 2.18

Figure 2.

Table 1. Intramolecular alkyl and acyl radical additions with uracil and thymine derivatives14

Conc. (M) Ratio of 7/8bRadical precursor 6a Yield (%)cEntry

R= X= Y=

�19:1a 78H H2 Br 0.021
70�19:10.02SePh2 OHb

0.02 �19:1 72c3 Me H2 Br
4 OMe 81�19:10.02d SePh

a All reactions were carried out on a 0.5 mmol reaction scale.
b Ratios of diastereoisomers were determined by 400 MHz 1H NMR integration.
c Isolated yields.
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Scheme 2 outlines the preparation of alkyl bromide 13
required for the batzelladine polycyclic guanidinium
core.14 Selective protection of 5-(hydroxymethyl)uracil
9 with benzoyl chloride and pyridine followed by purifi-
cation on a silica gel, furnished bis-N,O-benzoyl-5-
(hydroxymethyl)uracil 10 in 82% overall yield. The
alkyl bromide 13 was then prepared in an analogous
fashion to 6a, albeit with an enantiomerically enriched
secondary alcohol 11 derived from (R)-malic acid.19

Treatment of 13 under the standard free radical cycliza-
tion conditions furnished the azabicycle 14 as the major
diastereoisomer (Scheme 3).14 The stereochemistry of 14
was confirmed with the aid of an NOE NMR experi-
ment, which established the syn-relationship of the
protons at C-5/6 (thymine numbering).

In conclusion, we have demonstrated that intramolecular
addition of alkyl and acyl radicals to uracil, thymine
and 5-(hydroxymethyl)uracil derivatives provides a
diastereoselective route to 5,6-azabicycles, in which
the latter is applicable to the polycyclic guani-
dinium core of batzelladine A and D. Furthermore,
the azabicyclic cores represent unnatural nucleo-
side analogs that may serve as useful mechanistic
probes.
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